Consequences of AGW
Here's a reference list for the effects/consequences of AGW on weather as well as habitat/biodiversity impacts. This is very incomplete at this point, but I'm hoping to add to this rather quickly.
Outline
1. Effects on Weather
1.1 Heatwaves, Extreme Heat, Temperature-Related Mortality
1.2 Tropical Cyclones
2. Effects on Habitats and Biodiversity
2.1 Droughts and Wildfires
2.2 Coral Reefs
2.3 Plants/Crops
2.4 Polar Bears
1. Effects on Weather
1.1 Heatwaves and Extreme Heat
[1] Perkins-Kirkpatrick, S.E., Lewis, S.C. Increasing trends in regional heatwaves. Nat Commun 11, 3357 (2020). https://doi.org/10.1038/s41467-020-16970-7[2a] James Hansen, Makiko Sato, Reto Ruedy. Perception of climate change. Proceedings of the National Academy of Sciences Sep 2012, 109 (37) E2415-E2423; DOI: 10.1073/pnas.1205276109
https://www.pnas.org/content/109/37/E2415
[2b] Update of [2a]. "Dr. James Hansen on Climate."
https://redgreenandblue.org/2021/07/16/dr-james-hansen-climate-june-2021-global-temperature-update/
[3] Zhao, Q., Guo, Y., Ye, T., Gasparrini, A., Tong, S., Overcenco, A., … Vicedo-Cabrera, A. M. (2021). Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. The Lancet Planetary Health, 5(7), e415–e425. doi:10.1016/s2542-5196(21)00081-4. https://doi.org/10.1016/S2542-5196(21)00081-4
[4] Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., … Armstrong, B. (2015). Mortality risk attributable to high and low ambient temperature: a multicountry observational study. The Lancet, 386(9991), 369–375. doi:10.1016/s0140-6736(14)62114-0
[5] Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A. M., Huber, V., Tong, S., et al. (2017). Projections of temperature-related excess mortality under climate change scenarios. The Lancet Planetary Health, 1(9), e360–e367. https://doi.org/10.1016/s2542-5196(17)30156-0
[6] Lee, J., & Dessler, A. E. (2023). Future temperature-related deaths in the U.S.: The impact of climate change, demographics, and adaptation. GeoHealth, 7, e2023GH000799. https://doi.org/10.1029/2023GH000799
[7] Bressler RD, Moore FC, Rennert K, Anthoff D. Estimates of country level temperature-related mortality damage functions. Sci Rep. 2021 Oct 13;11(1):20282. doi: 10.1038/s41598-021-99156-5. PMID: 34645834; PMCID: PMC8514527.
[8] YCC Team. "Air pollution from fossil fuels caused 8.7 million premature deaths in 2018, study finds." https://yaleclimateconnections.org/2021/04/air-pollution-from-fossil-fuels-caused-8-7-million-premature-deaths-in-2018-study-finds/
*Note: need to move this to another location when I have a category for fossil-fuel related mortality.
*Note: need to move this to another location when I have a category for fossil-fuel related mortality.
1.2 Tropical Cyclones
[1] NOAA. International Best Track Archive for Climate Stewardship (IBTrACS).
https://www.ncei.noaa.gov/products/international-best-track-archive.
[2] NOAA. Tropical Cyclone Climatology. https://www.nhc.noaa.gov/climo/
[2] NOAA. Tropical Cyclone Climatology. https://www.nhc.noaa.gov/climo/
[3] Tom Knutson. "Global Warming and Hurricanes: An Overview of Current Research Results." NOAA: Geophysical Fluid Dynamics Laboratory. October 3, 2022. https://www.gfdl.noaa.gov/global-warming-and-hurricanes/
[4] Knutson, T., and Coauthors, 2019: Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bull. Amer. Meteor. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1.
[5] Knutson, T., and Coauthors, 2020: Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Amer. Meteor. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1.
[6] J.P. Kossin, K.R. Knapp, T.L. Olander, & C.S. Velden, Global increase in major tropical cyclone exceedance probability over the past four decades, Proc. Natl. Acad. Sci. U.S.A. 117 (22) 11975-11980, https://doi.org/10.1073/pnas.1920849117 (2020).
[4] Knutson, T., and Coauthors, 2019: Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bull. Amer. Meteor. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1.
[5] Knutson, T., and Coauthors, 2020: Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Amer. Meteor. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1.
[6] J.P. Kossin, K.R. Knapp, T.L. Olander, & C.S. Velden, Global increase in major tropical cyclone exceedance probability over the past four decades, Proc. Natl. Acad. Sci. U.S.A. 117 (22) 11975-11980, https://doi.org/10.1073/pnas.1920849117 (2020).
[7] Vecchi, G.A., Landsea, C., Zhang, W. et al. Changes in Atlantic major hurricane frequency since the late-19th century. Nat Commun 12, 4054 (2021). https://doi.org/10.1038/s41467-021-24268-5
[8] Emanuel, K. Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years. Nat Commun 12, 7027 (2021). https://doi.org/10.1038/s41467-021-27364-8
[8] Emanuel, K. Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years. Nat Commun 12, 7027 (2021). https://doi.org/10.1038/s41467-021-27364-8
[9] A Chan, Duo, Vecchi, Gabriel A, Yang, Wenchang, Huybers, Peter. Improved simulation of 19th- and 20th-century North Atlantic hurricane frequency after correcting historical sea surface temperatures. 2021. Science Advances. eabg6931 7 26. doi:10.1126/sciadv.abg6931. https://www.science.org/doi/abs/10.1126/sciadv.abg6931
[10] Chand, S.S., Walsh, K.J.E., Camargo, S.J. et al. Declining tropical cyclone frequency under global warming. Nat. Clim. Chang. 12, 655–661 (2022). https://doi.org/10.1038/s41558-022-01388-4
[10] Chand, S.S., Walsh, K.J.E., Camargo, S.J. et al. Declining tropical cyclone frequency under global warming. Nat. Clim. Chang. 12, 655–661 (2022). https://doi.org/10.1038/s41558-022-01388-4
[11] Yan, X., Zhang, R. & Knutson, T.R. The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nat Commun 8, 1695 (2017). https://doi.org/10.1038/s41467-017-01377-8
[12] Murakami, Hiroyuki. Delworth, Thomas L. Cooke, William F.. Zhao, Ming. Xiang, Baoqiang. Hsu, Pang-Chi. Detected climatic change in global distribution of tropical cyclones. Proceedings of the National Academy of Sciences. 117.20 (2020). 10706-10714. doi:10.1073/pnas.1922500117
https://www.pnas.org/doi/abs/10.1073/pnas.1922500117
[13] Klotzbach, P. J., Wood, K. M., Schreck, C. J., Bowen, S. G., Patricola, C. M., & Bell, M. M. (2022). Trends in global tropical cyclone activity: 1990–2021. Geophysical Research Letters, 49, e2021GL095774. https://doi.org/10.1029/2021GL095774
[14] Emanuel, Kerry. Evidence that hurricanes are getting stronger. (May 29, 2020). PNAS 117 (24) : 13194-13195.
https://www.pnas.org/doi/pdf/10.1073/pnas.2007742117
[15] J. P. Kossin, T. L. Olander, K. R. Knapp, Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 26, 9960–9976 (2013).
[12] Murakami, Hiroyuki. Delworth, Thomas L. Cooke, William F.. Zhao, Ming. Xiang, Baoqiang. Hsu, Pang-Chi. Detected climatic change in global distribution of tropical cyclones. Proceedings of the National Academy of Sciences. 117.20 (2020). 10706-10714. doi:10.1073/pnas.1922500117
https://www.pnas.org/doi/abs/10.1073/pnas.1922500117
[13] Klotzbach, P. J., Wood, K. M., Schreck, C. J., Bowen, S. G., Patricola, C. M., & Bell, M. M. (2022). Trends in global tropical cyclone activity: 1990–2021. Geophysical Research Letters, 49, e2021GL095774. https://doi.org/10.1029/2021GL095774
[14] Emanuel, Kerry. Evidence that hurricanes are getting stronger. (May 29, 2020). PNAS 117 (24) : 13194-13195.
https://www.pnas.org/doi/pdf/10.1073/pnas.2007742117
[15] J. P. Kossin, T. L. Olander, K. R. Knapp, Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 26, 9960–9976 (2013).
2. Effects on Habitats and the Biosphere
2.1 Droughts and Wildfires
[1] Abatzoglou and Wiliams, "Impact of anthropogenic climate change on wildfire across western US forests" PNAS October 18, 2016 113 (42) 11770-11775
https://www.pnas.org/content/113/42/11770
[2] Abatzoglou and Kolden, "Climate Change in Western US Deserts: Potential for Increased Wildfire and Invasive Annual Grasses" Rangeland Ecol Manage 64:471–478 | September 2011
http://www.pyrogeographer.com/uploads/1/6/4/8/16481944/abatzoglou_kolden_2011_rem.pdf
[3] Christoph Bachofen et al, Stand structure of Central European forests matters more than climate for transpiration sensitivity to VPD, Journal of Applied Ecology (2023). DOI: 10.1111/1365-2664.14383
[4] Balch et al, "Introduced annual grass increases regional fire activity across the arid western USA (1980-2009)" Global Change Biology · March 2013
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12046
[5] Barbara J. Bentz, Jacques RĂ©gnière, Christopher J Fettig, E. Matthew Hansen, Jane L. Hayes, Jeffrey A. Hicke, Rick G. Kelsey, Jose F. NegrĂ³n, Steven J. Seybold, Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects, BioScience, Volume 60, Issue 8, September 2010, Pages 602–613, https://doi.org/10.1525/bio.2010.60.8.6
[6] Barbara Bentz. "Bark Beetles and Climate Change in the United States." https://www.fs.usda.gov/ccrc/topics/bark-beetles-and-climate-change-united-states
[7] Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar (2013), Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments, Geophys. Res. Lett., 40, 3031–3035, doi:10.1002/grl.50563.
[8] Timothy Egan. The Big Burn: Teddy Roosevelt and the Fire that Saved America. Mariner Books; Reprint edition (September 7, 2010)
[9] Green, J.K., Seneviratne, S.I., Berg, A.M. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019). https://doi.org/10.1038/s41586-018-0848-x
[10] Hanna Grover. "Study: Warming climate leads to more bark beetles killing trees than drought alone."
https://nmpoliticalreport.com/2021/12/23/study-warming-climate-leads-to-more-bark-beetles-killing-trees-than-drought-alone/
[11] Ma X, Bai L. Elevated CO2 and Reactive Oxygen Species in Stomatal Closure. Plants (Basel). 2021 Feb 23;10(2):410. doi: 10.3390/plants10020410. PMID: 33672284; PMCID: PMC7926597.
[12] NCA4. "Figure 25.4: Climate Change Has Increased Wildfire."
https://nca2018.globalchange.gov/chapter/25/#fig-25-4
[13] Nelson, J.A., Morgan, J.A., LeCain, D.R. et al. Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado. Plant and Soil 259, 169–179 (2004). https://doi.org/10.1023/B:PLSO.0000020957.83641.62
Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado
[14] Politifact. "U.S. acres burned each year are much fewer now — even in our worst years — than was the case in the early 20th century."
https://www.politifact.com/factchecks/2021/oct/15/heartland-institute/no-wildfires-werent-bigger-1920s-and-30s-today/
[15] Zeke Hausfather. "Factcheck: How global warming has increased US wildfires."
https://www.carbonbrief.org/factcheck-how-global-warming-has-increased-us-wildfires
[16] Littell, J.S., D. McKenzie, D.L. Peterson, and A.L. Westerling, 2009: Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. Ecological Applications, 19 (4), 1003-1021.
http://dx.doi.org/10.1890/07-1183.1
[17] Short et al. USDA Forest Service Fire Data
https://www.fs.usda.gov/rm/pubs_journals/2020/rmrs_2020_short_k001.pdf
[18] Short Karen C. (2015) Sources and implications of bias and uncertainty in a century of US wildfire activity data. International Journal of Wildland Fire 24, 883-891.
https://doi.org/10.1071/WF14190
[19] Stewart et al, "Changes toward Earlier Streamflow Timing across Western North America" Journal of Climate 18 (2004).
https://pdfs.semanticscholar.org/43dc/df32d6c0fa6a3f64e3afa5a19b8635dd5627.pdf
[20] Tang and Arnon, "Trends in surface air temperature and temperature extremes in the Great Basin during the 20th century from groundbased observations," Journal of Geophysical Research: Atmospheres 118 (2013): 3579–3589.
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/jgrd.50360
[21] Wang, S., Foster, A., Lenz, E. A., Kessler, J. D., Stroeve, J. C., Anderson, L. O., et al. (2023). Mechanisms and impacts of Earth system tipping elements. Reviews of Geophysics, 61, e2021RG000757. https://doi.org/10.1029/2021RG000757
[22] Westerling, et al, "Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity" Science 313.5789 (Aug 2006): 940-943.
https://science.sciencemag.org/content/313/5789/940
[23] Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophysical Research Letters, 42 (16), 6819–6828. doi:10.1002/2015GL064924.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL064924
[24] Yuan, W. et al. (2019) Increased atmospheric vapor pressure deficit reduces global vegetation growth, Science Advances, https://advances.sciencemag.org/content/5/8/eaax1396
https://www.pnas.org/content/113/42/11770
[2] Abatzoglou and Kolden, "Climate Change in Western US Deserts: Potential for Increased Wildfire and Invasive Annual Grasses" Rangeland Ecol Manage 64:471–478 | September 2011
http://www.pyrogeographer.com/uploads/1/6/4/8/16481944/abatzoglou_kolden_2011_rem.pdf
[3] Christoph Bachofen et al, Stand structure of Central European forests matters more than climate for transpiration sensitivity to VPD, Journal of Applied Ecology (2023). DOI: 10.1111/1365-2664.14383
[4] Balch et al, "Introduced annual grass increases regional fire activity across the arid western USA (1980-2009)" Global Change Biology · March 2013
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12046
[5] Barbara J. Bentz, Jacques RĂ©gnière, Christopher J Fettig, E. Matthew Hansen, Jane L. Hayes, Jeffrey A. Hicke, Rick G. Kelsey, Jose F. NegrĂ³n, Steven J. Seybold, Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects, BioScience, Volume 60, Issue 8, September 2010, Pages 602–613, https://doi.org/10.1525/bio.2010.60.8.6
[6] Barbara Bentz. "Bark Beetles and Climate Change in the United States." https://www.fs.usda.gov/ccrc/topics/bark-beetles-and-climate-change-united-states
[7] Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar (2013), Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments, Geophys. Res. Lett., 40, 3031–3035, doi:10.1002/grl.50563.
[8] Timothy Egan. The Big Burn: Teddy Roosevelt and the Fire that Saved America. Mariner Books; Reprint edition (September 7, 2010)
[9] Green, J.K., Seneviratne, S.I., Berg, A.M. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019). https://doi.org/10.1038/s41586-018-0848-x
[10] Hanna Grover. "Study: Warming climate leads to more bark beetles killing trees than drought alone."
https://nmpoliticalreport.com/2021/12/23/study-warming-climate-leads-to-more-bark-beetles-killing-trees-than-drought-alone/
[11] Ma X, Bai L. Elevated CO2 and Reactive Oxygen Species in Stomatal Closure. Plants (Basel). 2021 Feb 23;10(2):410. doi: 10.3390/plants10020410. PMID: 33672284; PMCID: PMC7926597.
[12] NCA4. "Figure 25.4: Climate Change Has Increased Wildfire."
https://nca2018.globalchange.gov/chapter/25/#fig-25-4
[13] Nelson, J.A., Morgan, J.A., LeCain, D.R. et al. Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado. Plant and Soil 259, 169–179 (2004). https://doi.org/10.1023/B:PLSO.0000020957.83641.62
Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado
[14] Politifact. "U.S. acres burned each year are much fewer now — even in our worst years — than was the case in the early 20th century."
https://www.politifact.com/factchecks/2021/oct/15/heartland-institute/no-wildfires-werent-bigger-1920s-and-30s-today/
[15] Zeke Hausfather. "Factcheck: How global warming has increased US wildfires."
https://www.carbonbrief.org/factcheck-how-global-warming-has-increased-us-wildfires
[16] Littell, J.S., D. McKenzie, D.L. Peterson, and A.L. Westerling, 2009: Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. Ecological Applications, 19 (4), 1003-1021.
http://dx.doi.org/10.1890/07-1183.1
[17] Short et al. USDA Forest Service Fire Data
https://www.fs.usda.gov/rm/pubs_journals/2020/rmrs_2020_short_k001.pdf
[18] Short Karen C. (2015) Sources and implications of bias and uncertainty in a century of US wildfire activity data. International Journal of Wildland Fire 24, 883-891.
https://doi.org/10.1071/WF14190
[19] Stewart et al, "Changes toward Earlier Streamflow Timing across Western North America" Journal of Climate 18 (2004).
https://pdfs.semanticscholar.org/43dc/df32d6c0fa6a3f64e3afa5a19b8635dd5627.pdf
[20] Tang and Arnon, "Trends in surface air temperature and temperature extremes in the Great Basin during the 20th century from groundbased observations," Journal of Geophysical Research: Atmospheres 118 (2013): 3579–3589.
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/jgrd.50360
[21] Wang, S., Foster, A., Lenz, E. A., Kessler, J. D., Stroeve, J. C., Anderson, L. O., et al. (2023). Mechanisms and impacts of Earth system tipping elements. Reviews of Geophysics, 61, e2021RG000757. https://doi.org/10.1029/2021RG000757
[22] Westerling, et al, "Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity" Science 313.5789 (Aug 2006): 940-943.
https://science.sciencemag.org/content/313/5789/940
[23] Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophysical Research Letters, 42 (16), 6819–6828. doi:10.1002/2015GL064924.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL064924
[24] Yuan, W. et al. (2019) Increased atmospheric vapor pressure deficit reduces global vegetation growth, Science Advances, https://advances.sciencemag.org/content/5/8/eaax1396
2.2 Coral Reefs
[1] Wang, S., Foster, A., Lenz, E. A., Kessler, J. D., Stroeve, J. C., Anderson, L. O., et al. (2023). Mechanisms and impacts of Earth system tipping elements. Reviews of Geophysics, 61, e2021RG000757. https://doi.org/10.1029/2021RG000757
[2] Henley, B.J., McGregor, H.V., King, A.D. et al. Highest ocean heat in four centuries places Great Barrier Reef in danger. Nature 632, 320–326 (2024). https://doi.org/10.1038/s41586-024-07672-x
[3] Great Barrier Reef Marine Park Authority. Great Barrier Reef Outlook Report. 2024. https://outlookreport.gbrmpa.gov.au/
[4] The Great Barrier Reef Marine Park Authority, and The Great Barrier Reef Marine Park Authority. Reef 2050 Plan Annual Report , Australian Government, July 2019. https://www.dcceew.gov.au/sites/default/files/documents/reef-2050-long-term-sustainability-plan-2021-2025.pdf.
[5] Benjamin Petrick et al.,High sea surface temperatures were a prerequisite for the development and expansion of the Great Barrier Reef.Sci. Adv.10,eado2058(2024).DOI:10.1126/sciadv.ado2058
[6] McHugh, L.H., Lemos, M.C., Margules, C. et al. Divergence over solutions to adapt or transform Australia’s Great Barrier Reef. npj Clim. Action 3, 115 (2024). https://doi.org/10.1038/s44168-024-00180-8
[7] Pendleton, L., Hoegh-Guldberg, O., Albright, R., Kaup, A., Marshall, P., Marshall, N., … Hansson, L. (2019). The Great Barrier Reef: Vulnerabilities and solutions in the face of ocean acidification. Regional Studies in Marine Science, 100729. doi:10.1016/j.rsma.2019.100729
[8] GCRMN. Status of Coral Reefs of the World: 2020. https://gcrmn.net/2020-report-v1-2023/
[9] Emslie, Michael J., Annual Summary Report of Coral Reef Condition 2021/2022, Australian Institute Of Marine Science, 1 Aug. 2022. https://www.aims.gov.au/sites/default/files/2022-08/AIMS_LTMP_Report_on%20GBR_coral_status_2021_2022_040822F3.pdf.
[10] Emslie, Michael J., et al. “Decades of Monitoring Have Informed the Stewardship and Ecological Understanding of Australia's Great Barrier Reef.” Biological Conservation, vol. 252, 2020, p. 108854., https://doi.org/10.1016/j.biocon.2020.108854.
[11] Graham, N., Jennings, S., MacNeil, M. et al. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015). https://doi.org/10.1038/nature14140
[12] Dietzel Andreas, Bode Michael, Connolly Sean R. and Hughes Terry P. 2020Long-term shifts in the colony size structure of coral populations along the Great Barrier ReefProc. R. Soc. B.2872020143220201432 http://doi.org/10.1098/rspb.2020.1432
[13] Mellin, Camille, et al. “Spatial Resilience of the Great Barrier Reef under Cumulative Disturbance Impacts.” Global Change Biology, vol. 25, no. 7, 2019, pp. 2431–2445., https://doi.org/10.1111/gcb.14625.
[14] Stuart-Smith, R.D., Brown, C.J., Ceccarelli, D.M. et al. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018). https://doi.org/10.1038/s41586-018-0359-9
[15] Tyler D. Eddy, Vicky W.Y. Lam, Gabriel Reygondeau, Andrés M. Cisneros-Montemayor, Krista Greer, Maria Lourdes D. Palomares, John F. Bruno, Yoshitaka Ota, William W.L. Cheung, Global decline in capacity of coral reefs to provide ecosystem services, One Earth, Volume 4, Issue 9, 2021, Pages 1278-1285, ISSN 2590-3322, https://doi.org/10.1016/j.oneear.2021.08.016.
(https://www.sciencedirect.com/science/article/pii/S2590332221004747)
[2] Henley, B.J., McGregor, H.V., King, A.D. et al. Highest ocean heat in four centuries places Great Barrier Reef in danger. Nature 632, 320–326 (2024). https://doi.org/10.1038/s41586-024-07672-x
[3] Great Barrier Reef Marine Park Authority. Great Barrier Reef Outlook Report. 2024. https://outlookreport.gbrmpa.gov.au/
[4] The Great Barrier Reef Marine Park Authority, and The Great Barrier Reef Marine Park Authority. Reef 2050 Plan Annual Report , Australian Government, July 2019. https://www.dcceew.gov.au/sites/default/files/documents/reef-2050-long-term-sustainability-plan-2021-2025.pdf.
[5] Benjamin Petrick et al.,High sea surface temperatures were a prerequisite for the development and expansion of the Great Barrier Reef.Sci. Adv.10,eado2058(2024).DOI:10.1126/sciadv.ado2058
[6] McHugh, L.H., Lemos, M.C., Margules, C. et al. Divergence over solutions to adapt or transform Australia’s Great Barrier Reef. npj Clim. Action 3, 115 (2024). https://doi.org/10.1038/s44168-024-00180-8
[7] Pendleton, L., Hoegh-Guldberg, O., Albright, R., Kaup, A., Marshall, P., Marshall, N., … Hansson, L. (2019). The Great Barrier Reef: Vulnerabilities and solutions in the face of ocean acidification. Regional Studies in Marine Science, 100729. doi:10.1016/j.rsma.2019.100729
[8] GCRMN. Status of Coral Reefs of the World: 2020. https://gcrmn.net/2020-report-v1-2023/
[9] Emslie, Michael J., Annual Summary Report of Coral Reef Condition 2021/2022, Australian Institute Of Marine Science, 1 Aug. 2022. https://www.aims.gov.au/sites/default/files/2022-08/AIMS_LTMP_Report_on%20GBR_coral_status_2021_2022_040822F3.pdf.
[10] Emslie, Michael J., et al. “Decades of Monitoring Have Informed the Stewardship and Ecological Understanding of Australia's Great Barrier Reef.” Biological Conservation, vol. 252, 2020, p. 108854., https://doi.org/10.1016/j.biocon.2020.108854.
[11] Graham, N., Jennings, S., MacNeil, M. et al. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015). https://doi.org/10.1038/nature14140
[12] Dietzel Andreas, Bode Michael, Connolly Sean R. and Hughes Terry P. 2020Long-term shifts in the colony size structure of coral populations along the Great Barrier ReefProc. R. Soc. B.2872020143220201432 http://doi.org/10.1098/rspb.2020.1432
[13] Mellin, Camille, et al. “Spatial Resilience of the Great Barrier Reef under Cumulative Disturbance Impacts.” Global Change Biology, vol. 25, no. 7, 2019, pp. 2431–2445., https://doi.org/10.1111/gcb.14625.
[14] Stuart-Smith, R.D., Brown, C.J., Ceccarelli, D.M. et al. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018). https://doi.org/10.1038/s41586-018-0359-9
[15] Tyler D. Eddy, Vicky W.Y. Lam, Gabriel Reygondeau, Andrés M. Cisneros-Montemayor, Krista Greer, Maria Lourdes D. Palomares, John F. Bruno, Yoshitaka Ota, William W.L. Cheung, Global decline in capacity of coral reefs to provide ecosystem services, One Earth, Volume 4, Issue 9, 2021, Pages 1278-1285, ISSN 2590-3322, https://doi.org/10.1016/j.oneear.2021.08.016.
(https://www.sciencedirect.com/science/article/pii/S2590332221004747)
2.3 Plants/Crops
[1] Ziska, L.H. (2000), The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Global Change Biology, 6: 899-905. https://doi.org/10.1046/j.1365-2486.2000.00364.x
[2] Rumbidzai D. Katsaruware-Chapoto et al, "Responses of Insect Pests and Plant Diseases to Changing and Variable Climate: A Review." Journal of Agricultural Science Vol. 9, No. 12 (2017). https://www.ccsenet.org/journal/index.php/jas/article/view/66504
[3] Zhu et al (2018). Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Science Advances 23 May 2018: Vol. 4, no. 5, eaaq1012.
DOI: 10.1126/sciadv.aaq1012 https://doi.org/10.1126/sciadv.aaq1012
[4] Ortiz-Bobea, A., Ault, T.R., Carrillo, C.M. et al. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 11, 306–312 (2021). https://doi.org/10.1038/s41558-021-01000-1
[5] Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016). https://doi.org/10.1038/nature16467
[6] S. Irmak, R. Sandhu, M.S. Kukal, Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios, Agricultural Water Management, Volume 261, 2022, 107344. https://doi.org/10.1016/j.agwat.2021.107344.
[7] Zampieri, M., A. Ceglar, F. Dentener, and A. Toreti, 2017: Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters, 12 (6), 064008. doi:10.1088/1748-9326/aa723b.
[8] Zhao, C., B. Liu, S. Piao, X. Wang, D. B. Lobell, Y. Huang, M. Huang, Y. Yao, S. Bassu, P. Ciais, J.-L. Durand, J. Elliott, F. Ewert, I. A. Janssens, T. Li, E. Lin, Q. Liu, P. Martre, C. MĂ¼ller, S. Peng, J. Peñuelas, A. C. Ruane, D. Wallach, T. Wang, D. Wu, Z. Liu, Y. Zhu, Z. Zhu, and S. Asseng, 2017: Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114 (35), 9326–9331. doi:10.1073/pnas.1701762114
[9] Marshall, E., M. Aillery, S. Malcolm, and R. Williams, 2015: Climate Change, Water Scarcity, and Adaptation in the U.S. Fieldcrop Sector. Economic Research Report No. (ERR-201). USDA Economic Research Service, Washington, DC, 119 pp. URL.
[6] Kimball, B. A., J. W. White, G. W. Wall, and M. J. Ottman, 2016: Wheat responses to a wide range of temperatures: The Hot Serial Cereal Experiment. Improving Modeling Tools to Assess Climate Change Effects on Crop Response. Hatfield, J. L., and D. Fleisher, Eds., American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc., Madison, WI, 33–44. doi:10.2134/advagricsystmodel7.2014.0014.
[7] Beach, R. H., Y. Cai, A. Thomson, X. Zhang, R. Jones, B. A. McCarl, A. Crimmins, J. Martinich, J. Cole, S. Ohrel, B. DeAngelo, J. McFarland, K. Strzepek, and B. Boehlert, 2015: Climate change impacts on US agriculture and forestry: Benefits of global climate stabilization. Environmental Research Letters, 10 (9), 095004. doi:10.1088/1748-9326/10/9/095004.
[8] Schauberger, B., S. Archontoulis, A. Arneth, J. Balkovic, P. Ciais, D. Deryng, J. Elliott, C. Folberth, N. Khabarov, C. MĂ¼ller, T. A. M. Pugh, S. Rolinski, S. Schaphoff, E. Schmid, X. Wang, W. Schlenker, and K. Frieler, 2017: Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 8, 13931. doi:10.1038/ncomms13931.
[9] Yuan, W. et al. (2019) Increased atmospheric vapor pressure deficit reduces global vegetation growth, Science Advances, https://advances.sciencemag.org/content/5/8/eaax1396
[10] Fu, Z. et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 13, 989 (2022). Article
[11] Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020). Article
[12] Sulman, B. N. et al. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 43, 9686–9695 (2016). Article
[13] Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016). Article
[14] Chen, N., Zhang, Y., Yuan, F. et al. Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands. Nat Commun 14, 7885 (2023). https://doi.org/10.1038/s41467-023-42932-w
[15] Zhu, Z., Piao, S., Myneni, RB, Huang, M., Zeng, Z., Canadell, JG, et al. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6(8), 791-795.
https://escholarship.org/uc/item/8mc6q011
[16] Wang et al. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 11 Dec 2020: Vol. 370, Issue 6522, pp. 1295-1300 DOI: 10.1126/science.abb7772
https://www.researchgate.net/publication/346944015_Recent_global_decline_of_CO2_fertilization_effects_on_vegetation_photosynthesis
[17] Wenping Yuan, Yi Zheng, Shilong Piao, Philippe Ciais, Danica Lombardozzi, et al. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances , American Association for the Advancement of Science (AAAS), 2019, 5 (8), pp.1396-1-12. ff10.1126/sciadv.aax1396ff. ffhal-02895182
https://advances.sciencemag.org/content/5/8/eaax1396
[18] Maia et al. (2020) The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Science Advances 18 Dec 2020: Vol. 6, no. 51, eabd4548. DOI: 10.1126/sciadv.abd4548
https://advances.sciencemag.org/content/6/51/eabd4548
[19] Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 113 (36), 10019–10024. doi:10.1073/pnas.1604581113.
[20] Malcolm, S., E. Marshall, M. Aillery, P. Heisey, M. Livingston, and K. Day-Rubenstein, 2012: Agricultural Adaptation to a Changing Climate: Economic and Environmental Implications Vary by U.S. Region. USDA-ERS Economic Research Report 136. U.S. Department of Agriculture Economic Research Service, Washington, D.C.
http://www.ers.usda.gov/publications/err-economic-research-report/err136.aspx#.Uup1IHddVlw.
[21] Gourdji, S. M., A. M. Sibley, and D. B. Lobell, 2013: Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environmental Research Letters, 8 (2), 024041. doi:10.1088/1748-9326/8/2/024041.
[22] Hatfield, J. L., and J. H. Prueger, 2015: Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10 (Part A), 4–10. doi:10.1016/j.wace.2015.08.001
[2] Rumbidzai D. Katsaruware-Chapoto et al, "Responses of Insect Pests and Plant Diseases to Changing and Variable Climate: A Review." Journal of Agricultural Science Vol. 9, No. 12 (2017). https://www.ccsenet.org/journal/index.php/jas/article/view/66504
[3] Zhu et al (2018). Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Science Advances 23 May 2018: Vol. 4, no. 5, eaaq1012.
DOI: 10.1126/sciadv.aaq1012 https://doi.org/10.1126/sciadv.aaq1012
[4] Ortiz-Bobea, A., Ault, T.R., Carrillo, C.M. et al. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 11, 306–312 (2021). https://doi.org/10.1038/s41558-021-01000-1
[5] Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016). https://doi.org/10.1038/nature16467
[6] S. Irmak, R. Sandhu, M.S. Kukal, Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios, Agricultural Water Management, Volume 261, 2022, 107344. https://doi.org/10.1016/j.agwat.2021.107344.
[7] Zampieri, M., A. Ceglar, F. Dentener, and A. Toreti, 2017: Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters, 12 (6), 064008. doi:10.1088/1748-9326/aa723b.
[8] Zhao, C., B. Liu, S. Piao, X. Wang, D. B. Lobell, Y. Huang, M. Huang, Y. Yao, S. Bassu, P. Ciais, J.-L. Durand, J. Elliott, F. Ewert, I. A. Janssens, T. Li, E. Lin, Q. Liu, P. Martre, C. MĂ¼ller, S. Peng, J. Peñuelas, A. C. Ruane, D. Wallach, T. Wang, D. Wu, Z. Liu, Y. Zhu, Z. Zhu, and S. Asseng, 2017: Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114 (35), 9326–9331. doi:10.1073/pnas.1701762114
[9] Marshall, E., M. Aillery, S. Malcolm, and R. Williams, 2015: Climate Change, Water Scarcity, and Adaptation in the U.S. Fieldcrop Sector. Economic Research Report No. (ERR-201). USDA Economic Research Service, Washington, DC, 119 pp. URL.
[6] Kimball, B. A., J. W. White, G. W. Wall, and M. J. Ottman, 2016: Wheat responses to a wide range of temperatures: The Hot Serial Cereal Experiment. Improving Modeling Tools to Assess Climate Change Effects on Crop Response. Hatfield, J. L., and D. Fleisher, Eds., American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc., Madison, WI, 33–44. doi:10.2134/advagricsystmodel7.2014.0014.
[7] Beach, R. H., Y. Cai, A. Thomson, X. Zhang, R. Jones, B. A. McCarl, A. Crimmins, J. Martinich, J. Cole, S. Ohrel, B. DeAngelo, J. McFarland, K. Strzepek, and B. Boehlert, 2015: Climate change impacts on US agriculture and forestry: Benefits of global climate stabilization. Environmental Research Letters, 10 (9), 095004. doi:10.1088/1748-9326/10/9/095004.
[8] Schauberger, B., S. Archontoulis, A. Arneth, J. Balkovic, P. Ciais, D. Deryng, J. Elliott, C. Folberth, N. Khabarov, C. MĂ¼ller, T. A. M. Pugh, S. Rolinski, S. Schaphoff, E. Schmid, X. Wang, W. Schlenker, and K. Frieler, 2017: Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 8, 13931. doi:10.1038/ncomms13931.
[9] Yuan, W. et al. (2019) Increased atmospheric vapor pressure deficit reduces global vegetation growth, Science Advances, https://advances.sciencemag.org/content/5/8/eaax1396
[10] Fu, Z. et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 13, 989 (2022). Article
[11] Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020). Article
[12] Sulman, B. N. et al. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 43, 9686–9695 (2016). Article
[13] Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016). Article
[14] Chen, N., Zhang, Y., Yuan, F. et al. Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands. Nat Commun 14, 7885 (2023). https://doi.org/10.1038/s41467-023-42932-w
[15] Zhu, Z., Piao, S., Myneni, RB, Huang, M., Zeng, Z., Canadell, JG, et al. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6(8), 791-795.
https://escholarship.org/uc/item/8mc6q011
[16] Wang et al. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 11 Dec 2020: Vol. 370, Issue 6522, pp. 1295-1300 DOI: 10.1126/science.abb7772
https://www.researchgate.net/publication/346944015_Recent_global_decline_of_CO2_fertilization_effects_on_vegetation_photosynthesis
[17] Wenping Yuan, Yi Zheng, Shilong Piao, Philippe Ciais, Danica Lombardozzi, et al. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances , American Association for the Advancement of Science (AAAS), 2019, 5 (8), pp.1396-1-12. ff10.1126/sciadv.aax1396ff. ffhal-02895182
https://advances.sciencemag.org/content/5/8/eaax1396
[18] Maia et al. (2020) The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Science Advances 18 Dec 2020: Vol. 6, no. 51, eabd4548. DOI: 10.1126/sciadv.abd4548
https://advances.sciencemag.org/content/6/51/eabd4548
[19] Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 113 (36), 10019–10024. doi:10.1073/pnas.1604581113.
[20] Malcolm, S., E. Marshall, M. Aillery, P. Heisey, M. Livingston, and K. Day-Rubenstein, 2012: Agricultural Adaptation to a Changing Climate: Economic and Environmental Implications Vary by U.S. Region. USDA-ERS Economic Research Report 136. U.S. Department of Agriculture Economic Research Service, Washington, D.C.
http://www.ers.usda.gov/publications/err-economic-research-report/err136.aspx#.Uup1IHddVlw.
[21] Gourdji, S. M., A. M. Sibley, and D. B. Lobell, 2013: Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environmental Research Letters, 8 (2), 024041. doi:10.1088/1748-9326/8/2/024041.
[22] Hatfield, J. L., and J. H. Prueger, 2015: Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10 (Part A), 4–10. doi:10.1016/j.wace.2015.08.001
2.4 Polar Bears
[1] Amstrup et al (2010) Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence, Nature
[2] Bromaghin et al (2015) Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline, Ecological Applications
[3] Castro de la Guardia et al (2013) Future sea ice conditions in western Hudson Bay and consequences for polar bears in the 21st century, Global Change Biology
[4] Dag Vongraven, Andrew E. Derocher, and Alyssa M. Bohart. Polar bear research: has science helped management and conservation?. Environmental Reviews. 26(4): 358-368. https://doi.org/10.1139/er-2018-0021
[5] Hunter et al (2010) Climate change threatens polar bear populations: a stochastic demographic analysis, Ecology
[6] MolnĂ¡r, P.K., Bitz, C.M., Holland, M.M. et al. Fasting season length sets temporal limits for global polar bear persistence. Nat. Clim. Chang. 10, 732–738 (2020). https://doi.org/10.1038/s41558-020-0818-9
[7] Regehr et al (2016) Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines, Biology Letters
[2] Bromaghin et al (2015) Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline, Ecological Applications
[3] Castro de la Guardia et al (2013) Future sea ice conditions in western Hudson Bay and consequences for polar bears in the 21st century, Global Change Biology
[4] Dag Vongraven, Andrew E. Derocher, and Alyssa M. Bohart. Polar bear research: has science helped management and conservation?. Environmental Reviews. 26(4): 358-368. https://doi.org/10.1139/er-2018-0021
[5] Hunter et al (2010) Climate change threatens polar bear populations: a stochastic demographic analysis, Ecology
[6] MolnĂ¡r, P.K., Bitz, C.M., Holland, M.M. et al. Fasting season length sets temporal limits for global polar bear persistence. Nat. Clim. Chang. 10, 732–738 (2020). https://doi.org/10.1038/s41558-020-0818-9
[7] Regehr et al (2016) Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines, Biology Letters
Comments
Post a Comment